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should seem believable to you that any reasonable subset of RY whose hori-
zontal slices all have R¥-measure zero must itself have measure zero in R¥;
this is a form of “Fubini’s theorem,” proved in Appendix A. Granting it for
the moment, we conclude that every S, has measure zero in R".

Obviously, a function has a degenerate critical point on X if and only if
it has one in some U,. Thus the set of N-tuples a for which f, isnot a Morse
function on X is the union of the S,. Since a countable union of sets of
measure zero still has measure zero, we are finished. Q.E.D.

EXERCISES
1. Show that R* is of measure zero in R’, k < /.

2. Let 4 be a measure zero subset of R*, Show that 4 X R’ is of measure
zero in R¥*_ (This implies Exercise 1. How?)

@ Suppose that Z is a submanifold of X with dim Z < dim X. Prove that
Z has measure zero in X (without using Sard!).

4. Prove that the rational numbers have measure zero in R!, even though
they are dense.

5. Exhibit a smooth map f: R — R whose set of critical values is dense.
[HINT: Write the rationals in a sequence rg, r,, .. .. Now construct a
smooth function on [i, i + 1] that is zero near the endpoints and that
has r; as a critical value (Figure 1-26).]

Figure 1-26

*6. Prove that the sphere S* is simple connected if k > 1.
[HINT: If f: S' — S* and k > 1, Sard gives you a point p ¢ f(S").
Now use stereographic projection.]

7. When dim X < dim Y, Sard says that the image of any smooth map
f: X — Y has measure zero in Y. Prove this “mini-Sard” yourself,
assuming the fact that if 4 has measure zero in R’ and g: R* — R’ is
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smooth, then g(A) also has measure zero. [HINT: Reduce to the case of
a map f of an open set U = R* into R’ Consider F: U X R-* — R/
defined by F(x, t) = f(x).]

Analyze the critical behavior of the following functions at the origin.
Is the critical point nondegenerate ? Is it isolated ? Is it a local maximum
or minimum?

@) f(x,y) = x>+ 4y3

(b) f(x,y) = x> — 2xy + y*

©) f(x,y) = x2 + y*

(d) f(x,y) = x2 + 1lxy + y?/2 4 x©

(e) f(x,y) = 10xy + y* + 75)°

Prove the Morse Lemma in R!. [HINT: Use this elementary calculus
lemma: for any function f on R and any point a € R, there is another
function g such that

f(x) =f(a) + (x — a)f'(a) + (x — a)?g(x).
This result is proven on page 135.]

Suppose that f =3 a,;x,x;, in R*¥. Check that its Hessian matrix is
H = (a,;). Considering R* as the vector space of column vectors, H
operates as a linear map by left multiplication, as usual. Show that if
Hv = 0, then f is critical all along the line through » and 0. Thus the
origin is an isolated critical point if and only if H is nonsingular.

Using the Morse Lemma, prove that if a is a nondegenerate critical
point of a function f, there exists a local coordinate system (x,, ..., x,)
around a such that

6{=il.

[HINT: Diagonalize (4;)).]

Prove that the function f in Exercise 11 has a maximum at a if all the
€/s are negative and a minimum if they are all positive. Show that if
neither is the case, then a is neither a maximum nor a minimum.

Show that the determinant function on M(n) is Morse if n = 2, but not
ifn>2.

Show that the “height function” (x,, ..., x;) — X; on the sphere S*!
is a Morse function with two critical points, the poles. Note that one
pole is a maximum and the other a minimum.
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Let X be a submanifold of R". Prove that there exists a linear map
/: RY¥ — R whose restriction to X is a Morse function. (Exercise 14 is
a special case.)

Let f be a smooth function on an open set U — R*. For each x € U,
let H(x) be the Hessian matrix of f, whether x is critical or not. Prove
that f is Morse if and only if

k1 9f \2

det (H)? + 3 (:T) >0 onU.
i=1 X

Suppose that f, is a homotopic family of functions on R. Show that if

fo i1s Morse in some neighborhood of a compact set K, then so is every

f; for ¢ sufficiently small. [HINT: Show that the sum in Exercise 16 is

bounded away from O on a neighborhood of K as long as ¢ is small.]

(Stability of Morse Functions) Let fbe a Morse function on the compact
manifold X, and let f, be a homotopic family of functions with f, = f.
Show that each f, is Morse if ¢ is sufficiently small. [HINT: Exercise 17.]

Let X be acompact manifold. Prove that there exist Morse functions on

20.

X which take distinct values at distinct critical points. [HINT: Let f be
Morse, and let x4, . . . , Xy be its critical points. Let p, be a smooth func-
tion on X that is one on a small neighborhood of x; and zero outside a
slightly larger neighborhood. Choose numbers a,, . . ., ay such that

if Q%

Prove that if the a; are small enough, then

has the same critical points as f and is even arbitrarily close to f]

(a) Suppose that X is a compact manifold in R¥ and f'is a function on
X. Show that the N-tuples (a,, . . . , ay) for which

fo=f+ax,+ - + ayxy

is a Morse function constitute an open set.

(b) Remove the compactness assumption on X, and show that the set
{a:f, Morse} is a countable intersection of open sets. [HINT: Use
(a), plus the second axiom of countability.]

(c) The set {a: f, not Morse} is therefore a countable union of closed
sets. Show that this is enough to justify the use of Fubini in our
proof of the existence of Morse functions. (See Appendix A.)
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21. Let ¢: X — RY be animmersion. Show for “almost every” a,, . .., ay,
a, ¢, + --- + aypy is a Morse function on X where ¢,,.. ., ¢y are
the coordinate functions of ¢. [HINT: Show that the proof we gave for
the existence of Morse functions only requires X to be immersed in
R¥, not embedded.]

@ Here is an application of Morse theory to electrostatics. Let x,, ..., x,
be points in general position in R3 (that is, they don’t all lie in a plane.)
Letgq,,...,q, be electric charges placed at these points. The potential
function of the resulting electric field is

where r, =|x — x;|. The critical points of V, are called equilibrium
points of the electric field, and an equilibrium point is non-degenerate if
the critical point is. Prove that for “almost every” g the equilibrium
points of V, are non-degenerate and finite in number. [HINT: Show that
the map: R?* — {x,, ..., x,} — R* with coordinates r,, r,, rs, r, is an
immersion and apply Exercise 21.]

88 Embedding Manifolds
in Euclidean Space

The second application we shall give for Sard’s theorem is a
proof of the Whitney embedding theorem. A k-dimensional manifold X has
been defined as a subset of some Euclidean space R" that may be enormous
compared to X. This ambient Euclidean space is rather arbitrary when we
consider the manifold X as an abstract object. For example, if M > N, then
R¥ naturally embeds in R¥, so one might have constructed the same manifold
X in RM instead. Whitney inquired how large N must be in order that R¥
contain a diffeomorphic copy of every k-dimensional manifold. His prelimi-
nary answer was that N = 2k + 1 suffices; this is the result we shall prove.
After a great deal of hard work, Whitney improved his result by one, establish-
ing that every k-dimensional manifold actually embeds in R2*,

One way to interpret the Whitney theorem is as a limit to the possible
complexity of manifolds. Any manifold that may be defined in RY may also
be defined in R¥*'; but perhaps the extra room for twisting in R¥*! allows
the construction of manifolds there that cannot exist inside the smaller space
RY. (In fact, it is not a priori obvious that any single Euclidean space is
large enough to contain all manifolds of a given dimension.) A classic example
is the Klein bottle, a surface that can be constructed in R* by attaching the



